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1. Introduction
OQur goal in this paper is to prove the following result.

1.1 Main Theorem. Let X be a compact 3-manifold which admits a Rieman-
nian metric with strictly positive Ricci curvature. Then X also admits a metric of

constant positive curvature.

All manifolds of constant curvature have been completely classified by Wolf
[6]. For positive curvature in dimension three there is a pleasant variety of

examples, of which the best known are the lens spaces L, ,. Wolf gives
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256 RICHARD S. HAMILTON

different types. By our theorem, these are the only compact three-manifolds
which can carry metrics of strictly positive Ricci curvature. This answers
affirmatively a conjecture in Bourguignon [1].

It is known by a theorem of Myers (see Cheeger and Ebin [2]) that-a
compact manifold of strictly positive Ricci curvature has finite fundamental
group, so its universal cover is also compact and simply connected. The
Poincaré conjecture would imply that the universal cover is the sphere. Then
one version of the Smith conjecture would imply that the group of covering
transformations is conjugate to a group of isometries in the standard metric,
and the original space would admit a metric of constant positive curvature,
Thus if both these famous conjectures were known to be true, our result would
follow immediately. On the other hand if either of them fails, then there will be
a compact three-manifold with finite fundamental group which does not admit
a metric of strictly positive Ricci curvature.

The product manifold $2 X S' has a metric of nonnegative Ricci curvature,
with two eigenvalues +1 and the third 0. It does not admit any metric of
constant curvature, and hence represents an obstruction to improving the
result. _

Qur method of proof is inspired by the ideas of Eells and Sampson [3]. We
start with any metric g;; of strictly positive Ricci curvature R;; and try to
improve it by means of a heat equation. It would be natural to try to minimize
an energy functional. Unfortunately we cannot form any geometrically
meaningful quadratic expression in the first derivatives of the g;;, since they
always vanish in normal coordinates. It has been suggested to use the integral
fRdp of the scalar curvature as an energy. This leads to the evolution
equation (with n = dim X)

9 2
n

'&gij =—Rg;; — 2R

ije

which unfortunately will not have solutions even for a short time, since it
implies a backward heat equation in R. To eliminate this problem, we solve
instead the evolution equation

] _2
_a_tgij =T8T 2Rij5

where 7 is the average of the scalar curvature R,

r=fRdy./fdy..

This equation always has a solution at least for a short time on any compact
manifold of any dimension for any initial value of the metric at ¢ = Q. This
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involves some work, for the equation is not strictly parabolic, as its lineariza-
tion involves some zero eigenvalues in the symbol. (But at least they are not
negative, as is the case for the first equation.) We prove this result using the
Nash-Moser inverse function theorem.

It is worth noting that the degeneracies are there because the equation is
invariant under the full diffeomorphism group of X. This has the interesting
consequence that any isometries which exist in the metric to begin with are
preserved as the metric evolves. Hence if the initial metric is homogeneous or
symmetric then it remains so. For such spaces the evolution may be described
by the change in a finite number of parameters. For example, on the product
space S X S! the factor S shrinks and the factor ! expands. Our normaliza-
tion r is chosen so that the volume is always preserved. We also note that if X
has a fixed complex structure and if the initial metric is Ké&hler, then it will
remain so. ’

The rest of our results are peculiar to three dimensions. The essential
simplification here is that the full Riemannian curvature tensor R;;,, can be
recovered from the Ricci tensor R, o which is much smaller and easier to
analyze. However, we have not used the Sobolev inequality in a delicate way,
so there is hope that the method may also yield some results in higher
dimensions.

For a compact three-manifold, we prove that if the initial metric has strictly
positive Ricci curvature, then it continues so for all time, and converges as
t - oo to a metric of constant positive curvature. The proof of this result
requires three a priori estimates peculiar to this problem. The first shows the
Ricci curvature remains positive, the second, shows the eigenvalues of the Ricci
tensor at each point approach each other, and the third shows the gradient of
the scalar curvature R goes to zero, so that we can compare the curvature at
distant points. All three of these estimates are consequences of the maximum
principle for parabolic equations. Once these estimates are established, we can
control all the higher derivatives by some straightforward interpolation in-
equalities.

We would like to express our gratitude to the Harwood Foundation for a
generous grant for the research in this paper, and to Professor O’Donnell for
many inspirational remarks.

2. Notations and conventions
We will use the old-fashioned index notation for tensors, since it is well-
adapted to the intense computations we must perform. We denote vectors as
v, covectors as v;, and mixed tensors as T;},, etc. The summation convention
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will always hold. The Riemannian metric is g;;, its inverse is g”/, and the
induced measure is dp = p(x)dx where p(x) = detg,;. The Levi-Civita con-
nection is given by the Christéffel symbols
1 0 9 9
h — hk
Ti=38 (a P8 T 58 axkg"f)’
and the Riemannian curvature tensor is
R” =_8_ 9 I‘,"+I"’I‘1’—-I‘pI‘,k

ijk a i a ip™Jjk
We lower the index to the middle position, so that
— )
Riju = ghkRijI'
Then R, is anti-symmetric in the pairs i, j and k, / and symmetric in their
interchange, and satisfies a Bianchi identity on the cyclic permutation of any
three. For the sphere we have
R(u,v,u,v) = R, u'v/u*’' >0,
which is the opposite of the usual convention, but more symmetric. The Ricci
curvature is the contraction
R, = ngRijkl’
and on the sphere we have
R(u,u)=R,u'w >0,

which agrees with the usual convention. The scalar curvature R = gR,;. We
denote the covariant derivative of a vector v/ by
9v/ = —a—u/ + Lok,
ax’

and this definition extends uniquely to tensors so as to preserve the product
rule and contractions. For the interchange of two covariant derivatives we have

3,9;0" — 9;9,0" = Rl 0¥,
aiaj k_ajaiuk—' ijklg

and similar formulas for more complicated tensors. To see how to convert from
the old coordinate notation to the new coordinate-free notation the reader
should consider the formulas

for a vector v: v = v'3 /dx’,

for a covector L: L = L.dx’,

for a pairing: L(v) = L0/,

for a tensor: T(d/3x/, 8/3x*) = T;;3 /dx’,
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for a covariant derivative:

a a .0
a T(—-,', "—) =", Ti—.
T\ ox/ 7 axk Ik 9 x

For any tensor T such as T}; we define its length | T} | by
| Ti I = 848" 8*" T, T,

mn?

and we define its Laplacian AT by

AT = g780, Ty,
the trace of the second iterated covariant derivative. We hope these remarks
will aid the reader in following the paper.

3. The evolution equation
We consider the evolution equation on X"

0 2
(+) 328 T 8T 2Ry,
where r = [Rdp/[dp is the average scalar curvature. The factor r serves to
normalize the equation so that the volume is constant. To see this we observe
that if dp = p(x)dx is the measure then p = /det g;; and

9. 1,9

a_tlogﬂ' - 2g atglj — R,
3 — (. _ _
Efdp—f(r R)dp=0.

Now it is awkward to have the normalizing factor present until we really
need it. Therefore we will deal first with the unnormalized evolution equation

0
(*) 58y = ~2Ry)

which is easier to handle. The two equations differ only by a change of scale in
space and a change of parametrization in time. To see this we let #, &j» R R,
r denote the variables for the unnormalized equation (*) and ¢, §, i R, R,Fthe

corresponding variables for the normalized equation. To make the cimversmn
from () to (), we first choose the normalization factor ¥ = {(¢) so that if
g, = ¥g;; then [dfi =1, so that the new manifold has measure 1. Then we
choose a new time scale £ = [ P(¢) dt. It is easy to see that

R;;=R;, R=3R, F=3r,

<=~
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and [di =1 so [du =y "/2. Arguing as before we have (8/91)log p = -R
and so

d d _ 2
Elogfdp. = -r, Elog\;: = nr.

Then it follows that

d d d _2_. 5

atg” atgij+ (Ek’g\")&'j_ n 8ij 2R;;.
It is worth noting that for a sphere S” the normalized equation is constant,
while the unnormalized equation shrinks to a point in a finite time.

4. Solution for a short time

Consider the evolution equation 9g;;/9r = E(g,;) where E is the second
order nonlinear partial differential operator E(g;;) = -2R,;. The linearization
of this equatioin is 8g;,/9t = DE(g;;)§; ; where DE is the derivative of E and
&;; 1s the variation in g;;. We must compute DE, but all we need is its symbol.
This is obtained by taking the highest order derivatives and replacing 3 /9x’ by
the Fourier transform variable §;.

The variation g;; in the metric produces a variation I‘ * in the connection,
and this produces a variation R’ ;x in the curvature. Workmg in normal
coordinates where I'; h = 0 at a point and using the formulas in §2, we see that

r-h =1ig I(a‘gkl + akgjl_ algjk)a
I_[k = a r,z - a rl};c

Now an interchange of two covariant derivatives produces a lower order term.

Also the Ricci curvature is given by R, = R},. Then it is easy to compute

8 _ OBy _ g . ¥ }

DE(g,)g,.=-2R,=g" ; i j '
(gjk)gjk &k — & {axhaxt axlaxk axhax-’ 9x/axk

where the dots denote lower order terms. The symbol of the linear differential
operator DE(g ) in the direction {; is

6DE(gjk)(§i)gjk = ghi{ghgigjk - gigkghj - ghgjgik + gjgkghi}'

To see what the symbol does, we can always choose coordinates at a point so
that g;, = §;, = (1 if j = k, 0 otherwise), and without loss of generality since
the functlon is homogeneous we may assume {; has length 1, and rotate so
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i = land {; = 0 for i # 1. Then the effect of ¢DE on a tensor T, is

[6DE(g))T] =T, ifj#1,k#1,
[6DE(g)($)T) =0 ifk#1,
[oDE(g)(j‘)T]“ =T+ T+ - +T,.

The presence of the zero cigenvalues shows that the equation is not strictly
parabolic. There is actually a good reason for the presence of these zero
eigenvalues. The first way to see it is to consider the steady state equation
R;; = 0. If the evolution equation were parabolic, the steady state equation
would be elliptic, and its solution space would be finite dimensional. But the
solutions of R,; = 0 (when they exist) are invariant under the full diffeomor-
phism group, which is infinite dimensional.

The second way is to recall the second contracted Bianchi identity, which
tells us

g73,R;, = 13, R.

1

For any tensor T, we define the linear operator L(g,,), depending on the
metric g,; and its connection, by

L(ghi)T}k = gij(aiT}k - %ak]:'j)'
Note that L has degree 1 in g,; and degree 1 in T);. If E(g;,) = -2R, then
L(gjk)E(gjk) =0.
Taking first variations, we see that
L(gjk)DE(gjk)gjk + DL(gjk){E(gjk)’ gjk} =0.

Now the operator in §; given by DL is only of degree 1, so its symbol of
degree 3 is zero, and 3 is the degree of the other term L o DE, because L has
degree 1 and DE has degree 2. Therefore

UL(gjk)(gi) ° UDE(gjk)(gi)gjk =0,

and the image of 6DE(g;,) must lie in the null space of 6L(g},). This symbol
is

UL(gjk)(fi)T}k = gij(fz']}k - %g‘kT;‘j)'
Normalizing g, and §; as before we have

[oL(g)$)T) =T, ifk+#1,
["L(g)(f)T]l =3 Ty —Tp—Ty3—---—T,,).
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The null space of oL(g)({) consists of all those symmetric tensors T, with
TW=T,+ T3+ ---+T, and T\, =T;3=--- =T, =0. It is clear that
oDE(g)($) lies in this space. We can also see the following result.

4.1 Lemma. The symbol sDE(g)($) acts as multiplication by | § |* on the null
space of the symbol oL(g)$).

This shows that there are no degeneracies other than those implied by the
second contracted Bianchi identity. The following theorem is then an im-
mediate consequence of the general result in the next section.

4.2 Theorem. The evolution equation 3g;;/dt = -2 R, has a solution for a
short time on any compact Riemannian manifold with any initial metric ar t = 0.

5. Evolution equations with an integrability condition
We shall consider evolution equations

Y= k().

where E( f) is a nonlinear differential operator of degree 2 in f. We suppose f
belongs to an open set Uin a vector bundle F over a compact manifold X, and
E(f) takes its values in F also. Then E is a smooth map

E:C®(X,U) CC*(X,F)-»C~(X, F)
of an open set in a Fréchet space to itself. In studying the evolution equation it
is important to consider its linearization. Letting f denote a variation in f, we
get

- be(1)f,

where the derivative DE( f)f is a linear differential operator in f of degree 2.
We say E is parabolic if its linearization is parabolic around any f. This can be
expressed in terms of the symbol eDE( f)(§), which is obtained by replacing
each derivative 3 /9x/ by ¢ ;10 the highest order terms. (For simplicity we omit
the factor i = y-1.) If in local coordinates

afe/ot = E=(x', f8, 1P, 1F),
then the symbol of DE(f) is

eDE(f)(¢) =

f B (w18, 12, 18

The symbol is an automorphism of the vector bundle F to itself. Then DE( f)
is parabolic if all the eigenvalues of s DE( f)(§) have strictly positive real parts
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when £ % 0. In this case it is well known that the evolution equation df/d¢ =
E(f) has a unique smooth solution for the initial value problem f = f,atr = 0
for at least a short time interval 0 < r < ¢ (where ¢ may depend on f;).

We shall consider problems where some of the eigenvalues of 6DE( f)(£) are
zero. This happens when E( f) satisfies an integrability condition. Let g =
L{ f)h be a differential operator of degree 1 on sectionsfE UC Fandh € F
with values g in another vector bundle G over X, such that the operator
Q(f) = L(f)E(f) only has degree at most 1 in f. We call L( f) the integra-
bility condition for E( f). Taking a variation f in f we see that

L(f)DE(f)f+ DL(f){E(f), f} = DO(1)T.

Now the operators DL(f}{E(f), f} and DQ(f)f only have degree 1 in 7, and
hence the operator L( f)DE( f)f also has degree 1 only. Therefore taking the
symbols, 6L(f)(§€) - eDE( f )(§) = 0. From this we see that

ImoDE(f)(§) C Null oL( f)(£).
If L is not trivial then ¢ DE( f)(§¢) must have a null eigenspace. The most we
can hope is that the restriction of 6DE( f }(§) to Null 6 L( f )(§) is positive. We
shall prove the following result.

5.1 Theorem. Let df/dt = E( f) be an evolution equation with integrability
condition L{ f). Suppose that

(AYL(SE(f) = Q(f) has degree 1,

(B) all the eigenvalues of the eigenspaces of sDE( f)(§) in NulloL( f (&) have
strictly positive real parts.

Then the initial value problem f = f; at t = 0 has a unique smooth solution for
a short time 0 < t < ¢ where &¢ may depend on f;.

Proof. We shall use the Nash-Moser inverse function theorem (see [5] for a
complete exposition by the author). We shall show that if 3f/3z — E(f) = Ais
a solution of the evolution equation on 0 < ¢ < 1, with f = f—o at ¢ = 0, then for
any f, near f, and 4 near h there exists a unique solution of the equation
df/9t — E(f) = h over the interval 0 <7 < 1 with f = f; at z = 0. To see that
this implies the theorem, choose f to be any function whose formal Taylor
series at £ = 0 is what it must be to solve df/dr = E(f) with f=fyat t =0,
and let A= af/at - E(f) Then the formal Taylor series of 2 at 1 =0 is
identically zero. By translating # a little, we can find A arbitrarily close to / and
vanishing for a short time 0 < ¢ < &. Then the solution of 39f/dr — E(f)=#
with f = f, at ¢ = 0 solves the equation up to time &.

We can apply the Nash-Moser inverse function theorem to the operator

6: (X% [0,1], F) » C=(X X [0,1], F) X C=(X, F),
&(f) = (3f/3t — E(f), f| {t = 0}).




264 RICHARD S. HAMILTON

Its derivative is the operator
D&(f)]= (3% = DE(/)f. /1 {(1=10}).
We must show that the linearized equation 3 f, /8t — DE(f) f = k has a unique
solution for the initial value problem f= j;) at 1t =0, and verify that the
solution fis a smooth tame function of 4 and f.
We make the substitution § = L(f)f. Then § will satisfy the evolution
equation

g _ 3f z of
2 =L T DL(f){f, §}~
However 3f/0t = DE(f)f + h. Moreover differentiating the integrability con-
dition L(f)E(f) = Q(f) we get
L(f)DE(f)f+ DL(f){E(f), [} = DOQ(f)f.

Then we get the equation
03
S M()f=k
where k£ = L(f)# and

M) =L 7, &) = DLINE). ) + DR(£)F

is a linear differential operator in f of degree 1 whose coefficients depend
smoothly on f and its derivatives (possibly of degree 3 in space, or | in space
and 1 in time).

If we choose a measure on X and inner products on the vector bundles F
and G, we can form a differential operator L*( f)g = &, of degree 1 in fand g,
which is the adjoint of L( f). Let us write

P(f)=DE(f)+ L*(f)L(f).

We claim that the equation 3f/0t = P( f)f is parabolic. To see this, we must
examine the symbol

oP(f)(§) = oDE(f)(§) + oL*(f)(£) - oL(f)(£).
Suppose v is an eigenvector in F with eigenvalue A. Then oP( f )(§)v = Av. But
oL(fX£) - oDE(f)£)=0,s0

oL(f)(§) - oL*(f)(§) - oL(f)(€)v = AoL(f)(£)v.

It follows that

|oL*(f)(£) - oL(f)(§)o P = A|aL(f)(£)v .
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Now if aL*( f)(§) - 6L(f)(£)v = 0 then oL(f)(§)v = 0, and otherwise A is

real and strictly positive. When oL(f)(¢)v = 0 then 6DE(f)(£{)v = Av, and A

has strictly positive real part by our hypothesis (B). Thus P( f) is parabolic.
We proceed to solve the system of equations

S )+ LDz =F,
0§ o~
53 M) f=k

for the unknown functions f and § for given / and k and given f, with initial
dataf=fyand Z = g, = L(f)fatz = 0. )

It follows from the theorem in the next section that the solution ( f, £) exists
and is unique, and is a smooth tame function of (f, k, &, f,, ,)- Then putting
I'= g — L(f)f we see that [ satisfies the evolution equation

¥ unrui,

and /= 0 at z = 0. But then the obvious integral inequality
i 72 * 712 —
aJ)Pan+2[ | L()iPdu=0

proves that / = 0. Then it follows that 8f/d: — DE(f)f = k. This completes
the proof of the theorem, except for the result of the following section.

6. Weakly parabolic linear systems
Let X be a compact manifold and let F and G be vector bundles over X. We
consider a system of linear evolution equations on 0 < ¢ < T for sections f of F
and gof G

—aa—{=Pf+Lg+h, %f—=Mf+Ng+k,

where P, L, M and N are linear differential operators involving only space
derivatives whose coefficients are smooth functions of both space and time. We
assume P has degree 2, L and M have degree 1, and N has degree 0.

6. Theorem. Suppose the equation 3f/dt = Pf is parabolic. Then for any
given (fy, 8o, 1, k) there exists a unique smooth solution (f, g) of the system
withf = fyandg = gyatt = 0.

Proof. We can use the equation to solve formally for the Taylor series of f
and g at ¢z = 0. Choose functions f and g with the given Taylor series, and
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subtract them off from f and g. This reduces us to the case where f, g, &, k are
all known to vanish for ¢ < 0. We can then use the following regularization
device.

We introduce a time lag 8 > 0 into the second equation, so that

(%)wa = (Mf+ Ng + k),.

The resulting system clearly has a unique smooth solution on 0 < ¢ < T, for we
can alternatively use the first and second equations separately to advance the
solution on intervals of length 8 > 0. In the sequel we shall derive a priori
estimates for the solutions f and g of the evolutionary system. These estimates
also clearly hold for the delayed system and are independent of & » 0. We
leave the necessary modification to the reader. Then by passing to a convergent
subsequence we get a solution for § = 0.

We turn to the a priori estimates. We introduce the following norms. For a
section of F (or G) over X we let |f|, measure the L, norm of f and its
derivatives up to degree n. For a time-dependent section f over X X [0, 7] with
f={f:0<t<T} weput

T
7= [ 1,

so that | f|, measures space derivatives of degree < n only. Then we put

ifiz2=3 0@/8eY sy

2j<n

which is a weighted norm counting one time derivative equal to two space
derivatives. (We caution the reader that this weighted grading is not tamely
equivalent to the usual one.) The differential operators P, L, M, N are all
sections of some appropriate bundles over X, which could be interpreted in
terms of jet bundles. We measure P, L, M, N in terms of norms |[L]|, where
{L], measures the supremum of L and its space derivatives up to degree n, and
|[ 1], is the corresponding norm counting one time derivative equal to two
space derivatives as before. (Note that the gradings || ||, and |[ ]|, are tamely
equivalent. Also from a point of view of tamely equivalent gradings it does not
really matter that for odd » our grading || Il , has missed 7 of a time derivative,
compared to the usual one for parabolic equations. This allows us to avoid the
nuisance of discussing fractional derivatives.)

6.2 Theorem. Let the solution ( f, g) of the system of evolution equations be
written as a function

(f’g)=S(P’L’MaN,h,k,f6,go)
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of the coefficients P, L, M, N, the data h, k and the initial values f,, g,. In the
open set where P is parabolic the solution S is a smooth tame map in the gradings
| t,onf, g h kand| |, onf,andg,and|[]|,on P, L, M, N.

We shall prove these theorems by a sequence of lemmas.

63 Lemma. Ifdf/0t — Pf=hon0<t<Tandf=20att=0 then we can
find a constant C independent of 0 such that for0 <@ <T

( (
[irga<c[|nar
0 0

Proof. When 8 = T this is a standard result for parabolic equations (see
[4]D). To see that C is independent of 8 for 0 < 8 < T we use the following
device. We extend P to be parabolic on the interval -T < ¢ < T. Note that we
may assume all the derivatives of f vanish at ¢+ = Q also, for the set of such
functions is dense in those with f; = 0 in the norm || || ,. Then we may extend f
smoothly to be zero for -7 < ¢ < 0. Now we consider translations by T — 8 of
the original equation. ThenP and f on -T + § < < § correspond to their
translates on 0 < ¢ < 7. Since the estimate above is coercive for P, it follows
by the usual argument that the same constant C works for all operators in a
neighborhood of P. Hence we can make one constant C work for any compact
set of parabolic operators P. But the set of translates is compact, so the lemma
follows.

6.4 Corollary. Ifof/0t—Pf=honO<t<Tand f=f,att =0 then we
can find a constant C independent of 6 such that for 0 <8< T

(7 [
[irBar<c[|nBa+Clhl
0 0

Proof. The norm |f; |, is equivalent to the quotient norm inf{|| f ||,: f = f,
at 7 = 0}. It suffices to check this in local coordinates, where we can use the
Fourier transform. Given f(x) on ¢ = 0, we define the extension f(x, ¢) by
letting

T ) 1
1+€P) 1+|¢P

6.7 =4 A0,

where () is a smooth function of compact support with [ y{+)dr = 1. Then
fextends fyandif 8 = 7/(1 + | £[?)

3= f [+ 182+ 1711/, 7) P dgdr

= [1W(O)P (1 +181)d8- [(1+]£1) | /o(8)  a
<cClhl-
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Conversely given on ¢ = 0 with f = f, at = 0, we can first extend fto r <0
without increasing || fil, by more than a factor. Then using the Fourier
transform, since

(&) = [F(&, ) ar
we have

1ol = sup [(1+[£17) (£)a(&) at

1glo=1

= sup [ [(1+41)"* /(¢ 1)g(¢) dtar

lglo=<1
Sfifi’x[” + €0+ 7)1 7(& 7)) déd'r}
+IEP) 2O P, %
{ff +|£|2+| l) Ed'r} .

Now the first integral is bounded by Il |3, and the second is bounded by a
constant, since

L+ ]¢p° -
f( f1+lf’l)

1+ [€F + |7

Thus | £, |2 < CIl f I, proving our assertion.

We can combine the extension operators in local coordinates to produce a
linear extension operator C*( X, F) - C®(X X [0, T}, F) such that if f* is the
extension of f, then f* =f, at t=0 and | f*|, < C|f|;- Now given f
satisfying 0f/0t — Pf=h and f = f, at t = 0, let f* be the extension of f,
constructed above and let 3f* /8t — Pf* =h*. M f=f*+fand h=h*+ h
then af/d: — Pf=4, and f=0 at z = 0. We can then estimate f using the
previous lemma, so

[rrpa<[ 1z pac+ [1fRar,
[irga<[Tigrga<ciriz<cig
0 0

[ligar<c[|ipa,

0 0

. 4
[k gar<[1nga+ [ a,
0 0 0
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) T
j(;|h;" Bar< [ |nzRar<cimii<clfii<clfnl
0

Combining these estimates the result follows.
6.5 Lemma. Ifdg/0t=k,thenfor0<0<T

0
gl <Cf 1k ftar+ Claoft-

Proof. Since
0
8 =8 T /; k,dt

and every norm is convex, we have

(]
|86l <l 8ol + [ 1k, |1 at.
0

But we also have

2
(falk,hdt) <6’k Ra.
0 0

Therefore the above estimate holds with a constant C independent of  for
0<6<T.

Note that if there is a delay 6 in time, so that (dg/d¢),. 5 = k,, and if g and
k vanish for ¢ < 0, then g also vanishes for 7 < 8, and we have a better estimate

(
|gowali<Cf kil

for0<g<T-6.

Now we assume f and g are solutions of the system of evolution equations
9f/dt=Pf+ Lg+ h and dg/3t = Mf+ Ng+ k with f=f, and g=g, at
t = 0. To simplify the following formulas we let

E=|hlog+ |kl + 1ol +8l-

6.6 Lemma. We have estimates for0 <8 <T

[\rgar<c[’gfd+ CE,
0 0

gt < (4B + &) d + CE2
Proof. We apply our two previous estimates, replacing 4 by Lg + & and k
by Mf + Ng + k. Then
| Lg, + ko< C( gl + |2 1o),
| Mf, + Ng, + k.|, < C(lf |, + &1 + | &)
and the result follows directly.
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6.7 Corollary. A solution of the system of evolution equations satisfies the a
priori estimate
Iflat gl <C(hlo+ |kl + ol +18&])-
Proof. By the above estimates we have

8
8ol < C['| gt + CE™.
0

Then for any A > 0 we have

T T T - -
Afazoe 2| gg ﬁdoscftzo{fa:t)\e*(' a)dﬂ}e Mg, 2 dr

“and since the bracketed integrals are < 1, we have

(A - c)fTOe-Wg,ﬁdz < CE?
=

with a constant C independent of A. When A > C we get |g|* < CE?. Then
|fI2 < CE*also.
Note that if there is a time delay §, so that
(ag/at)t+8 = (Mf+ Ng + h)ta
then we get a better estimate

")
|80+s|%<c‘/(; |g [} dt + CE?,

and since
T—8 _ T
f ew|8é7'+s|1d0=emf e™| gy} at,
6=0 6=0
the same argument yields the same estimate with a constant independent of §
asé - 0.

Next we show the same low-norm a priori estimate holds uniformly in a
neighborhood of a given system. Fix operators P, L, M, N and consider all
operators P, L, M, N in a neighborhood

[P—Pl+[L-—Ll+[M—M),+[N-N] <.
If P is parabolic, and 8 > 0 is small enough, then so is P.

6.8 Lemma. If § > 0 is small enough then for all systems P, L, M, N in the

given neighborhood the a priori estimate

Ifh+1gh<C(ulo+ [kl +1hh +18&1)
holds with a fixed constant C.
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Proof. 1If f and g solve the system of evolution equations for P, L, M, N,
then

%:Ff+1?g+(P—F)f+(L—E)g+h,

%f—=ﬁf+ﬁg+(M—M‘)f+(N—ﬁ)g+k.

Applying the estimate for the fixed system P, L, M, N we get
[fb+(gh<C((P=P)f+(L—L)g+h,
+|(M"H)f+ (N_ﬁ)g'*'kh +ihh+ |go|1),

Ifl+1glh <C8(fl;+1gh) + Chlo+ 1kl + 161+ &)
When 8 > 0 is sufficiently small, the estimate follows.

We can now estimate higher space derivatives in the usual way by differ-
entiating through the equation. Choose connections in the vector bundles F
and G and let 3,f denote the covariant derivative of the section f in the
direction of a vector field v. There is then a natural way to define the covariant
derivative of the linear differential operators so that (for example)

3(Lf) = L(3,f) + (3,L)f.
Note that 9,L will be a differential operator of the same degree as L, formed
by allowing the derivatives to fall on the coefficients. We will let 3, denote the

sum over a finite number of vector fields which span the tangent space at each
point of X.

6.9 Lemma. For all solutions of all systems in the §-neighborhood given before
we have a priori estimates for all n = 0 of the form

flarz T 18lest SCUAL + 1k Loy + 16 lner + 180 1as1)
+C([P]n + [L]n + [M]n+l + [N]n+l) X (lhIO + Ikll + lﬁ)ll + |g0ll)

Proof. This holds for n = 0. We proceed by induction. Suppose the esti-
mate above holds up to some n. Differentiating through the equation, we have
2 a.r=Po,f+ Lag+ (3,2)7 + (3,L)g + 3,h,

%ng = MJ,f+ Nd,g+ (8,M)f +(38,N)g + d.k.
For simplicity we write

An =If|n+2 + |g‘n+l’
Bn = [P]n + [L]n + [M]n+l + [N]n+l?
En =‘h|n + |k|n+1 + ‘f0ln+l + IgO |n+1’
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in terms of which the induction hypothesis is 4, < C(E, + B,E;), and B; < 3§
< C. Applying the induction hypothesis to the derived equation, we have
,avf|n+2 + lavg |n+1 < C(En+l + BIAn + Bn+lA0)'
Now 4, < CE,and 4, < C(E, + B,E,). Moreover by interpolation we have
Ban = CBOBn+I s CBn+l’
BlEn < C(BOEn+l + Bn+]E0)’
and hence

An+1 =|fln+3 + ‘gln+2 <2 } avf‘n+2 + ‘aug|n+1 + An
v

< C(E,;; + B, \E,).

which completes the induction.

Finally we can estimate time derivatives also simply by using the equations.
We get the following result for the weighted gradings || ||, and |[ ]|, defined
earlier, in which one time derivative counts for two space derivatives.

6.10 Lemma. For all solutions of all systems in the 8-neighborhood given
before we have a priori estimates for all n = 0 of the form

Ffll e T lgl s < C(”h”n Ukl g T 1o lner + ‘g0|n+l)
+COLPY, + [[L] s + 1 [M] sy + [ [N |nsr)
X (Nallg + M&N + 161 + | goh)-
Proof. We must estimate the terms
1(3/32) flamzjaz +1(8/30) g1 04
for 2 j < n. We can do this for j = 0 as before. We proceed by induction on j.

Suppose we have estimates up to some value of j. Then for the j + 1 terms we
have

1 (3/8¢)Y ™ flums; =1 (3/80) (Pf + Lg + 1) |1,
1(8/02)" g lumg;1 =| (3/32) (MFf + Ng + k) |,—2,_y»

and by interpolation we need only consider the extreme cases where all the
derivatives in both space and time fall entirely on P, L, M, N or entirely on

1/, 8 h, k.
For the first terms we get

1 (8/0Y flaezjsn + | [P1a1f ]2+ 1(3/88) g lumsjur + [[L1 ]| g, + UIAN,
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and for the second terms we get

\(%),’_2 M 1 F +l(§;)j8

which is even better than we need. The above can be bounded by terms

13/31) flamzjsz + 1 (3/31) g luajur + I, + Kl
+ (P, + 1 TLY ] + 1 1M] st + 1 [N Lo )7l + 8-

We apply the induction hypothesis to the first part and our previous estimate
to | f|, + | g |- This proves the lemma.

If the second equation contains a delay & in time, we can still differentiate
through the equation with respect to space or time, and the derived equation
has the same form with the same delay. Hence the estimates in Lemmas 6.9
and 6.10 still hold with a constant C independent of § as & — 0. To prove
existence for a single equation we do not have to keep track of how the
constant depends on the coefficients P, L, M, N.

Now the last lemma clearly is a tame estimate on the solution map

(f,g):S(PaLaM,Nahak,fbago)

in the weighted gradings. It follows that & is continuous, since the spaces
C*( X, F) and the others are all Montel spaces. Then it also follows that all the
derivatives of S are tame also, by the formula for the derivative of an inverse.

+ |[N]Irz—1|g|0+ ”k“rz—l’
1

n—2j—

7. Evolution of the curvature
The evolution equation 9g;;/3t = —-2R;; for the metric implies a heat
equation for the Riemannian curvature R,,, which we now derive. This
equation will be the basis for all our a priori estimates on the evolution of the
curvature. Recall we define

ARijkl = gpqapaqRijkl'
Various second order derivatives of the curvature tensor are likely to differ by
terms quadratic in the curvature tensor. To this end we introduce the tensors
Bk = 878% R0 R st
Note we have the obvious symmetries
B = Bjiw = By
but the other symmetries of the curvature tensor R;;, may fail to hold for

:

H
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7.1 Theorem. The curvature tensor satisfies the evolution equation
6

62‘ Ukl ARUkI + Z(Bijkl - Bij[k - Bi/jk + Bikj/)

_gp ( p_/k/qu + Rlpk/R + R qu + Rijkqu/)‘

ijpl

Proof. Letting a prime denote differentiation with respect to time ¢, we see
by considering the formulas for I‘J‘k and R, ;, in normal coordinates that for
any evolution of a metric g;; we have

I'vh — hm(ajg[,m + alg_;m - amg_;l),
/h = aI‘ th _ 6.I‘.”'

l_j/

ijk

Riju= ghkRzJI + ghkRul

Combining these results and the identity

aiajglél - ajafg/;/ = gpq(Rijkpg:;I + Rijlpg:;k)’
we get the identity

R:'jkl = —%(aiakgfl - aialgj,‘k - ajakgi,l + ajalgi,k)
+ %gpq(Rijkpg;I + Rijplg;k)’
which holds for any evolution of a metric. In our case g/, = -2R,;, and
substituting this gives
ikt = 9,0, R;; — 9,9,R;, — 9,0, R, + 0,0,R;,
~8P( Ry, Ry + RyjpRy)-

Then Theorem 7.1 is an immediate consequence of the following identity,

which is independent of any evolution equation.

7.2 Lemma. For any metric g;; the curvature tensor R, ;,, satisfies the identity

ijk
ARijk/ + Z(Bijkl - Bijlk - Biljk + Bikjl)
+gpq(Rpjk1qu + Ripkquj)'
Proof. This formula is obtained from the second Bianchi identity
9;R +8Rk,,,,,+8R =0

by differentiating, exchanging derivatives, permuting indices and contracting.
To begin we have

AR:‘jkl 6 3 Rz_/kl pq(apaiR

jkim ijlm

- apaquikl)

qjkl
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by differentiating the second Bianchi identity and contracting. We examine the
first term, since the second is symmetric in i and j. Interchanging the order of
derivatives we have

= gpqgmn(R

qjkl

ank[ + R ankl + R R + Rpilqujkn)'

pigm pijm pikm* qjnl
The first of these terms contracts to g#?R,, ;R ;. On the second term we can

use the first Bianchi identity to write it in terms of the tensor B, ; thus
87g™" R R pii = =Bijii + Bijigs

pijm
and the last two terms are -
second Bianchi identity

g"%,R

it B, ke Moreover we have the contracted

= 0,R; — Ry,
to which we apply the derivative 9. Then
879,09, R ;) = 0,0, R;; — 3,;3,R
- (Bijkl - Bijlk - Biljk + Bikjl)
+8P9R R i

qjkl

Replacing this in our formula for AR, ;,, and doing the same for the term with i
and j interchanged yields the formula in the lemma.
7.3 Corollary. The Ricci curvature satisfies the evolution equation
9
ot
Proof. Recall AR, = g?79,0 R,. We use the relation R, = g/R,;, to
contract the previous equation. Now
(') = -g'rglig;,
by the usual formula for the derivative of the inverse of a matrix, and therefore

Ry = gﬂR;jkl + ZgjpglqRijklqu-

Ry = ARy +2878%Ry R, — 287R, iR g -

Substituting for R} ;,, and making the obvious contractions yields
Ry = AR, + Zgjl(Bijkl - 2Bij1k)
+ zgprgq:Rpiqurs - zgqupquk .

Then the corollary follows from the following lemma.
7.4 Lemma. For any metric g,; the tensor B, satisfies the identity

ng(Bijkl - 2Bij1k) =0.
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Proof. Using the Bianchi identity
gﬂBijkl = gj[gprgqupiqurksl

= gjlgprgqupqinrskl

= gﬂgprgqs(Rpiqj - RPM")(R”“/ = Roisi)
= 2gﬂ(Bijk1 - Bijlk)

and the result follows.
7.5 Corollary. The scalar curvature R satisfies the evolution equation

: y
FR=AR+2g g*Ry R,

Proof. Again we contract the previous equation. Since R = g*R;, we have
R = gikR:'k + ZgijgklRikth

where the second term comes from (g*). Then the equation for R/, im-
mediately gives g'“R’, = AR.

7.6 Corollary. If the scalar curvature R > 0 at t = 0, then it remains so.

Proof. The term g'g*'R, R is just the norm squared of the Ricci curva-
ture, and hence is always positive. The result now follows from the maximum
principle for the heat equation. This simple example is a model for our
subsequent a priori estimates. It also shows why the evolution equation
“prefers” positive curvature.

8. Curvature in dimension three
The Weyl conformal curvature tensor is defined as

1
Wik = Rijki— n—_i(gikle — 8uRy — g Ryt ngRik)
1

+—-— s PP . : .
(n—D(n-— z)R(gxkgjl gxlgjk)

This tensor is known to depend only on the conformal structure, so that if
&, = ¥g;; then W, skt = YW, ji- In dimension n = 4 the conformal curvature
tensor vanishes if and only if the metric g;; is conformally flat. In dimension
n = 3 this fails; instead there is a condition on the first derivative of the
curvature, and the conformal curvature tensor always vanishes.

To see that W, = 0 in dimension three, observe first that it has all the
symmetries of the Riemannian curvature tensor R, ;,, so that
Wit = Wit = Wik = Wik = Whaij»

I

Wik t Wity T Wiy = 0,

I
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and in addition all its traces vanish, so
g ikn/:'jkl =0.
Thus
Wi + Wi + W53 =0,

and so
Wiae = ~Wisi3 = Waggs = Wiy = ~Wiapa,s

which implies W},,, = 0. Moreover
Wiais + Wapps + Wi = 0,

and so W},;; = 0 also. Hence in general any term W, ;,, = O unless 7, j, k and /
are all distinct. In dimension 3 there are only 3 possible choices for the indices,
and the tensor must vanish identically.

This is just one special case of a general theory about tensors as representa-
tions of the orthogonal group O(n). Any tensor decomposes as a sum of
irreducible tensors, each of which is trace-free and has the maximum possible
symmetry. Tensors with sufficiently exotic symmetries will always vanish in
sufficiently low dimensions. In any case, we have the following result, which is
well known.

8.1 Theorem. In dimension three we have

Riii = 8uRj — 8uRj — Ryt gyRuc — %R(gikgﬂ - gugjk)-
This result implies that we can recover the full Riemannian curvature tensor

R,z just from the Ricci curvature R;;, which is much easier to handle. For
example, we can always diagonalize R;; at a point, so that

A0 O
R;,=|0 g 0},
0 0 »

where A, pi, » are the eigenvalues. Then the only nonzero components of R, ;;,
are those of the form

Ry =3A+p—vr),

and those derived from it by permutation. Thus the condition for positive
sectional curvature in three dimensions is that each eigenvalue of the Ricci
tensor is smaller than the sum of the other two.

8.2 Corollary. In dimension three a metric has positive sectional curvature if
and only if R;; < }Rg, . This shows that the condition of positive Ricci curvature
is much weaker than that of positive sectional curvature.

As a consequence of the formula for R, ;,, the evolution equation for the
Ricci curvature R;; takes a particularly simple form in dimension three. To
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simplify the formulas we introduce the following notation. We let
Sy = R?/ = Rijgijkl’
T;'n = R?n = RijgijklglmR

mn?>

and we let S and T be the traces
S =g'S,;, T=g"T,.

Then in terms of the previous diagonalization

A2 b
A 3
R-~=( B ), S = w » I;= 13 ’
v

)
V2 V3

R=A+p+v, S=R+p2+0, T=R+p +
We also introduce the tensor
Q;;=6S;; — 3RR;; + (R* - 2S)gij’
whose entry in the top corner is
AN — 2 —p?—Ap— Av + 2up,

and whose other entries may be obtained by permuting the eigenvalues. This
tensor may seem somewhat bizarre, but is characterized by the following
property.

8.3 Theorem. The tensor Q;; vanishes identically on any three dimensional
symmetric Riemannian manifold. Any symmetric tensor T, ; which is quadratic in
the Ricci curvature and has this property must be a scalar multiple of Q; ;.

Proof. The Ricci curvature on a three dimensional symmetric space either
(2) has all its eigenvalues equal, as for S3, or else (b) has two equal eigenvalues
and the third is zero, as for S? X S'. In either case it is easy to check that
Q;; = 0. Conversely any tensor of the given type which is quadratic in the
Ricci tensor must be a linear combination of S;;, Sg;;, RR,;, and R’g;;. Then
considering the cases (a) and (b) gives enough conditions to show the tensor is
a multiple of @, ..

84 Theorem. In dimension three the Ricci tensor satisfies the evolution
equation

0

5Rij= ARij_ Qij'

Proof. This follows directly from substituting the formula in Theorem 8.1
for the Riemannian curvature into the formula in Corollary 7.3 for the
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evolution of the Ricci curvature. The reader can check for himself that
gprquRpiqurx = %R‘Rik - 2Sik + ( - %Rz)gik’

and since gP9R ;R , = S, the result holds.

9. Preserving positive Ricci curvature

We shall use the following result, which generalizes the maximum principle
to tensors. We say that a symmetric tensor M, =0 if M, ;0'v/ =0 for all
vectors v'. As usual, AM, ;= gP99,0, M, ;. We let u* be a vector field and we let
8:;» M;; and N,; be symmetric tensors on a compact manifold X which may all
depend on time .

We assume that N;; = p(M;;, g;;) is a polynomial in M, ; formed by contract-
ing products of M,; with itself using the metric. We require that this poly-
nomial satisfy the condition that whenever ¢’ is a null-eigenvector of M, j» SO
that M;;0o' =0 for all j, then we have N,;v'v/ =>0. We prove the following
result.

9.1 Theorem. Supposethaton0<t<T

%sz =AM, + u"akM,.j + N,
where N;; = p(M,;, g,;) satisfies the null-eigenvector condition above. If M;; = 0
att =0, then it remainssoon0 << T.

Proof. We will show M;; > 0 on 0 <7< § where § > 0 is small compared
to a constant C depending only on max | M;;| . Then repeated application of
this result will cover the entire interval in a finite number of steps. To this end,
we let

M,=M_+¢d+ t)g,-j,

and we claim M,; >0 on 0 <t <2§ for every ¢ >0. Then letting ¢ — 0 will
finish the proof.

If not, there will be a first time § with 0 < < § where M, ; acquires a null
eigenvector v' of unit length at some point x € X.IfN; = p(M,;, g;,), then by
our null-eigenvector condition N, v’/ = 0 at (x, 8). Moreover

INij - Nyl=< CIMU - M;l,
where the constant C depends only on max(] M, ;| T1M;;]) since p is a

polynomial. If we keep ¢, § < 1, then max | M, ;| depends only on max | M, ;| .
Therefore

j°

N, jv'v! = —Cé8,

where C depends only on max | M, ;| and not on ¢ or 4.
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We can extend v to a vector field in a neighborhood of x with 8,0 = 0 at x,
with v’ independent of ¢. Let

= M,0'’.
Thenf=0on0<t<6@andall of X,s09f/0tr<0andd,f=0and Af >0 at
(x, 9), where f = 0. But

af d ) W,

= = | —M.. {v'v/ +

o ( P M, ;o' €,
and at (x, §) where 3,0’ = 0 and M;,v' = 0,

0 f= 0, M v/, Af = AM, v'v’.
From the evolution equation
(%Mij)v‘vj =AM, v'v/ + u*3, M, v'v’ + N, o'/,

which shows that N;; v'v/ < —¢. Combining this with the previous estimate, we
have £ < Cée. This gives a contradiction when C8 < 1.

We will assume now that the evolution equation has a solution on the
interval 0 <t < 7.

9.2 Corollary. IfR,;=0att=0thenR,;=00n0<t<T.

Proof. We apply Theorem 9.1 with «*=0, M;;=R;; and N, =-Q, .
When M;; has a null eigenvalue A = 0 the corresponding eigenvalue of N;; is
(p—7»)*=0.

To get more precise control on R;; we need the following computation.

93 Lemma. IfR +# 0, then

d (R _ (Rij 2 .4 R\ _ RQ;,+ 2SR,
at(R)_A R)-i-ig apRaq(R R? .

Proof. SincedR,;/0t = AR, — @;;and R /3t = AR + 28, we have
3 (R,.j) _ R(AR, - Q;) — R, (AR +285)

#\ R R2
On the other hand
R;,\ RAR,—R,AR 3 R,
ij — ij ij ij
A(T) = e - ig”apRaq(_R_)'
The lemma follows.

9.4 Theorem. If R >0 and R,; > eRg;; for some constant ¢ >0 at t = 0,
then both conditions continue to holdon 0 < t < T.



THREE-MANIFOLDS WITH POSITIVE RICCI CURVATURE 281

Proof. We saw that R > 0 continues to hold in Corollary 7.6. We apply
Theorem 9.1 with

R;; 2

M,;= TJ_ €8s uk = ”R'gklalR,
RQ;;+ 2SR;;
R? )
It is an immediate consequence of Lemma 9.3 that the equation in Theorem 9.1
is satisfied. Let us consider what happens to N;; when M;; acquires a null
eigenvector. The analysis is easy since when R, is diagonal so are M;; and N, .
Suppose the null eigenvalue of M, ; occurs in the top position, corresponding to
the eigenvalue A of R,;. Then A = &(A + p + »). The corresponding entry in
R?N,;is
2MA+p+r)Y ~ (A +p+ )N — p? — p? ~ Ap— Av + 2p0)
—2M(A + p? + »?).

Using the previous identity to eliminate &, and multiplying out and gathering
terms, this entry becomes

A+u+ v)[?\(u +2)+ (p— v)z] — 2A(N? + p? + »?),
which further simplifies to

R(p+v—20) + (o + »)(p—»).

Now if R;; = ¢Rg;; then R = 3¢R, and if R> 0 then e < }. But then p + » =
(1/e = DA =2A, so p + » — 2A = 0. Therefore at any null eigenvector of M;;
the matrix N;; is positive. The theorem follows.

It is easy to obtain a bound above on R, ;.

95Lemma. IfR, = 0thenR;; < Rg;,.

Proof. Sincel,p,7v=0wehaveA <A+ p+ 2.

The consequence of these estimates is that when R;; >0 at z = 0 we have a
uniform bound A/p < C on the ratio of any two eigenvalues of R, ; holding as
long as the solution exists. This allows us to control all the curvature R, ; just in
terms of the scalar curvature R. The following estimate is also interesting.

9.6 Theorem. If eRg;; <R, < BRg,; for some constants ¢ and B with
0<e< i< B<lart=N0,then both conditions continue to holdon 0 <t < T.

Proof. Note that if e = § or 8 = 4 then the manifold has constant curva-
ture and the result is trivial, while 8 = 1 always holds. We apply Theorem 9.1
with

Mj=25R,.j—(

R;; 2
M= Bg; — _R'J" uk = k?gklalR’
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RQ,, + 2SR,
N, = (———F—_ — 2BR,;.

It follows immediately from Lemma 9.3 that the equation in Theorem 9.1 is
satisfied. Again we consider what happens to N;; when M;; acquires a null
eigenvector in the top position where R,; has eigenvalue A. In this case
A = B(A + u + »). The top entry in R?N;; is

(A+p+2)2N —p? —»2—Ap— Av + 2p»)
F2A(N + g2 + v?) — 28AA + p + »).

Eliminating S with the above identity and gathering terms, this reduces to
XA —p—») — (gt 2)(n—»)
which we can rearrange as
20(A =) + (¥ = g2 +27)(u — »),

which is clearly positive if A = p = » = 0. To handle the possibility that A is
not the largest eigenvalue we use a continuity argument. Let § be the largest
time on which R, < (8 + 0)Rg, ;» where § will be chosen small compared to 8
and e If we can show R;; < BRg;; up to time §, then we must have § = T.
Now since A = B8(A + p+») and 8= 1 we see A cannot be the smallest
eigenvalue. Assume g = A = ». Up to time § we have u < (B + YA + p + »),
and by Theorem 94 we have v = ¢(A + p+ »). Since p=A=B(A +p + »)
and v< y(A+p+wv) we have p—v=(B— DA +p+v»). If B=1 the
manifold has constant curvature, and this case is easy to handle. Assume 8> 1.
The entry of N,; in question by algebraic rearrangement becomes

P2 (p—2) = (e = N2+ A+ p)(s~ 7)),
which is at least
(B — 1) — 8[282 + (28 + 8)(B + 8)]

times (A + p + »)2 This expression will be positive if § is small enough
compared to B and e. This completes the proof.

9,7 Corollary. If the sectional curvature is positive at t = 0, then it remains
soonQ=<i<T.

Proof. We say in Corollary 8.2 that the sectional curvature was positive if
and only if R,; < 3Rg,;;. The same result holds for weakly positive sectional
curvature, taking 8 = 3.
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10. Pinching the eigenvalues

The next estimate shows, after a fashion, that the eigenvalues of the Ricci
tensor approach each other, at least at those points where the scalar curvature
becomes large (for the unnormalized equation). Consider the expression
S — 1R? quadratic in the eigenvalues

S—4R=4(A—p) + (A =») + (e —»)].

Clearly S — {R? =0, and vanishes only when A = p = ». Thus it measures
how far the eigenvalues diverge from each other. If indeed the manifold is
becoming spherical, we expect S — 1R? to become small, at least compared to
R? for the unnormalized equation. That is the content of our result. We assume
as usual that our manifold is three dimensional, the initial metric has strictly
positive Ricci curvature, and the (unnormalized) evolution equation has a
solutionon 0 < ¢ < 7.

10.1 Theorem. We can find a 8 > 0 and a constant C < o depending only
on the initigl metric such that on 0 < t < T we have

S — 1R?< CR?*79,
Proof. We take y = 2 — 8 with 1 <y < 2. The following equations follow

from the equations for the evolution of the Ricci curvature and the scalar
curvature,

d 0
ERU = ARU - Q,-j, ER = AR+ 2S5.
Recall that
S =|R; IZ = gikgﬂRinkl =N+ p?+ 2%
T= gingjkglmRinklRmn = AB + p'3 + V3a
and let

| aiRjk Iz = g”gjmgk"aszkalRmm
c= %gikgﬂQinm: 3(R® — 5RS + 6T)
=(N+ 2 +03) = (B + A7 + X + A% + pPo + pr?) + 3Apr
as the reader may compute. Note that C is a cubic expression in the eigen-
values which vanishes for any symmetric metric; one can show that this

condition characterizes C up to a multiple.
10.2 Lemma. The expression S satisfies the evolution equation

3
3S =AS = 2| 3R, [P+ 4T - C).
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Proof. From the evolution equations for g;; and R, ; we have

d Y
55= 2g"*g/AR,; - Ry + 4T — C),

while we also have
AS =2g*g/AR, ;- R, + 2| 8,R, [*.
103 Lemma. If R > 0 then for any v
a({ S\ _ S 2(y—1) S
T

h RY
2 2
- Ry.(..z IRal Jk atR ) Rjkl
2 — - — 2yS?
Ry+2 Ry+l
Proof. We have
9S dR
(S _ Ro; — 5% (S _ R3;S ~ ySO,R
FY: - RY*1 » VR T RYH! ’

A S ) _ RAS — ySAR 2y
_Iz—‘y - Ry+ 1 - R‘/"" 1
Introducing the obvious inner product of two tensors

< ijk? ljk> g jmgk"Tx"jkl]Imn’

gU3R -8 + 1%+—1)s |8,R .

we have
(%;R,9,8)= 2(9; Jk,aR-Rjk>,

S
<8,.R, a,.(ﬁ)>= —R—Y(a,.R, 9,8

and we also have

S|RP=|8,R- R,

Thus the terms in the evolution equation for S/RY which are quadratic in the
first derivatives of the curvature are equal to 1/RY*? times

-2R?| &R, |> + 2yYR(3,R,3,S)— y(y + 1)S|3,R *
= -2|R3,R;, — ;R - Ry [*+2(y — 1)(R(3,R, Sy~ yS| R ?)
+(v—2)(y— DS| R,
and now the result follows directly.
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104 Lemma. If R >0, then for any ¥

9 _._ 2y —1 _
a—R“ Y= ARV + 'L—R—)-gpqapRaq(Rz 7)
C-—y)(y—1 -
- ———F(:;—-——)—Rz |3,RI>+2(2 — v)R'77S.

Proof. We have

%Rz Y= (2 - y)R™Y(AR + 28),
AR*™ 7 =(2—y)R"™MR+ (2 —v)(1 — y)R| 3R],
2(y—1 _
(—R——)gMa,,Raq(R2 ") =22 —y)(y — 1)R7| 3R,

and the result follows.
105 Lemma. Iff=S/RY — 1R>77, then

Y o np+ B D grag o f~ 2| ROR, — 4R - Ry, P

1+2

Syl ;3(]2 —D (s~ 1r?)|9RP

R7+1 [~ v)s(s — 4R?) —2P],
where P = §* + R(C — T).

Proof. This follows directly from Lemmas 10.3 and 10.4.

Now we must analyze the polynomial P, which is clearly a symmetric
polynomial of degree 4 in A, p, ».

10.6 Lemma.

P=NA—p)A =)+ (g — A)p—»)+ v*(r = A)v — p).

Proof. Using our formulas for R, S, T, and C (given just before Lemma
10.2) we can multiply out to get

P=(X+p*+2*) — (N + A + ¥v+ 2% + v + p®)
+ (Npr + Ap?y + Apr?).

And if we multiply out the polynomial above we get the same thing. Note that
the polynomial P vanishes for any symmetric metric, since it vanishes when
A=p=vorwhenA =pandr =0.

10.7 Lemma. IfR > 0and R,; > eRg,, then P = ¢°S(S — 1R?).

Proof. Since both sides are homogeneous of degree 4 in }\ B, v, it suffices
to check the result on § = A2+ p? + »2 = 1. Assume A =>p = » > 0. Since
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(A+p+2)?=N+p2+ »? =1, wehave » = &(A + p + ») = ¢ by the bound
R;; = eRg,; ;. Now we can rewrite P as

P=(A=p) [V + A+ p)(p—»)] + (A= v)(p—»),
which makes it clear that
P2 R\ = p) + v (u =Y,
and since A = » = & we have

P=&(A=p) + (n = »)].

On the other hand, since

A =2 =[A=p)+ (=) <2[(A=p)* + (e —»)],

we see that
SR =4[(A=p) + A= oP + (=) <A = p) + (0 —»),

and this proves the lemma.

10.8 Lemma. If 8§ > 0 is chosen so small that § < 2¢?, then withy =2 — §
andf= S/RY — {R*™Y we have

%‘ < Af+u*a,f,
t

where u* = (2(y — 1)/R)g*3,R.

Proof. This follows from Lemma 10.5 and our estimate on P.

Now we can finish the proof of Theorem 10.1. Let & > 0 be as above and
choose C so that

S -

r IR*T<C

at ¢ = 0. Then f < C at ¢ = 0, and by the maximum principle we have f < C on
0 < r < T for the same C. Thus we have § — {R? < CR?*™® as desired.

11. The gradient of the scalar curvature

Again we assume our manifold is compact and three dimensional, the initial
metric has strictly positive Ricci curvature, and the unnormalized evolution
equation has a solutionon 0 <z < T.



THREE-MANIFOLDS WITH POSITIVE RICCI CURVATURE 287

11.1 Theorem. For every n > 0 we can find a constant C(n) depending only
on n and the initial value of the metric, such that on 0 < t < T we have

[8,R? <nR?>+ C(n).

Proof. We start with the evolution equation for | 3;R |* = g"/8,R3;R.
11.2 Lemma. The gradient squared of the scalar curvature satisfies the
evolution equation

) B
2 |3R P = A[QR P — 2| 93,R | + 453,R3;S.

Proof. We compute
d y g
@ |9, R|>=2gY3,AR - ;R + 4g"/3,R3;S
+2g*g/R,,8,R;R,
A|3;R[>=2gUA,R - ;R + 2|3,;R|?,
Ad;R = 3,AR + g/*R, 3, R,

and the result follows easily by combining ‘terms.
11.3 Lemma. We have the evolution equation

3 [1&RPY _ \[l19RP 2
E(’R— —AT ——;|Ra,.a,R—a,.RajR|2

'faRas——]aR|2

Proof. We compute

3 (|0R[?\ _ RA|3R[2—|3,RAR 2 ,
5( L) = — — =5 | ROZR|

4 g"8,R8,S — —|8R\2

while

N |a,.R|2) _ RA|3,RP - |3,RPAR
R | R?

4 2
— —5(ROGR, JRYR)+ <5 |ARYRT,

and the result follows.
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114 Lemma. We have evolution equations

%RZ = AR? — 2|3,R? + 4RS,
a%s =AS — 2|3, R; P+ 4T~ C),
0
5 (S = $R?) = A(S — 4R?) = 2(| 3R, [ = 3 [9R ) + 40,
where Q = T — {RS — C.

Proof. The first follows from 9R /9t = AR + 28, the second is Lemma
10.2, and the third follows by subtraction.

11.5Lemma. Q < R(S — 1R?).

Proof. Recall that the polynomial P = $? + R(C — T) = 0 from Lemma
10.5. Then since S < R? we have

QR< P+ QR = §(S — 1R*) < R*(S — 1R?),

and the result follows by dividing by R.

Now since 9,R = g/*8,R,, it is trivial to see that

| R[> <3[0,R; [,

since (a + b+ ¢)?> < 3(a®+ b% + ¢?). It is a little surprising that a slightly
better estimate holds.

11.6Lemma. |J,RP < 2|3R, |

Proof. This is a consequence of the contracted second Bianchi identity,
which says,

gY8,R;, = 39,R.
It is always a good idea to try writing a tensor as a sum of irreducible
components. Write

aiRjk =E + Fy,
where

Ej = i%(gijakR + gikajR) + IS_OgjkaiR'

1
Then it is easy to compute
lEijk |2 =% |9R ‘2-

On the other hand, we can check that the tensor F,

ik = aiRjk —E;, is
trace-free, so that

gijf;'jk =0, gik‘F;'jk =0, gjk‘Fz"jk =0.
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Indeed that was how we figured out what E,;, should be. It follows that
(E;jx, Fjx)= 0 and the tensors E, ;, and F;, are perpendicular. Then
| aiRjk lz =| E;ix |2 + lEjk |2 =% |9R |2,
and this proves the lemma.
11.7 Lemma. We have the estimate

%(s ~ 1R*) <A(S — iR*) — % |3,R; [* + 4R(S — 1R?).

Proof. This follows from Lemmas 11.4, 11.5, and 11.6.

Now we return to the equation for | 3;R |°/R in Lemma 11.3. The problem
with this equation is the term g”/8; R9;S, which we estimate as follows.

11.8 Lemma. We have

gY3,R9,S <4R|,R; |*.
Proof. We use the Cauchy-Schwartz inequality
g70,R3S = 2(Q,R - Ry, ;R )< 2| O, R[| R || 3R],

and |R;[*=S<R?and [, R?<3|3R; . We take y3 <2 to avoid a
square root.
11.9 Lemma. We have the estimate forn < }

3 (If’.»RI2
at R

—9R*| <A I3RE _ R*| +16|3;R | — 43R’
1 o= R n Iijkl I

Proof. We use the equation in Lemma 11.3 and the first equation in
Lemma 11.4, multiplied by 5. Since S = {R* the term 2(S/R?)|9;R|
dominates 27| 3, R |? for 5 < }. We bound the term g*/3, R9,S by Lemma 11.8.

Now we want to combine Lemmas 11.7 and 11.9. The idea is to add enough
of S — $R*10|9,R |*/R to cancel off the term | 3, R, |?, and then use Theorem
10.1 to make R(S — 1R?) small compared to R>. Note 168 - % = 16.

11.10 Lemma. Let F=|3;R|*/R — nR* + 168(S — 1R?). Then for any 7
with 0 <n < % we can find a constant C(n) depending only on 1 and the initial
value of the metric at t = 0 such that

oF

Proof. Using Lemmas 11.7 and 11.9, the terms which are left are
672R(S — 1R?) — #3R%.
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Now by Theorem 10.1 we can find a constant C and some § > 0 depending
only on the initial value of the metric, such that S — $R? < CR?~%. Then with
a constant C(7) depending only on C, 8, and n we have

CR*7? — $3R* < C(n)

and the result follows.
It remains only to find a bound on 7, the time for which the solution exists.
Since S = 1R? we have
dR 2
—_— = ZR2
% AR + 3 R
which forces the minimum value of the scalar curvature R to go to infinity in a
finite time.
11.11 Lemma. If R > p att = O for some constant p > 0 then T < 3 /(2p).
Proof. The solution of the ordinary differential equation
af _ 2

@ —gfz V\’ithf=patt=0

is given by

Taking f as a function on X X ¢ constant in X we have
9 2
S(R=1)=MR—f)+ F(R+[)R~]),

and the maximum principle implies R —f= 0 on 0 <t < T. Since f — ¢ as
t - 3/p, we must have T'< 3 /p.

Now the equation 0F /0t < AF + C(7) implies max F, < max F, + C(n)t.
Then our bound on T shows that F < C(7) for some (possibly larger) constant
C(n) depending only on 7 >0 and the initial value of the metric (which
determines F,). This gives

F=|3,R|*/R — nR* + 168(S — $+R?) < C(n),
|9,R|><nR* + C(n)R,
and of course

2R® + C(n)R <29R*> + C(9)

for some constant C(7). Since n > 0 is arbitrary, this proves the result.
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12. Interpolation inequalities for tensors

Let 7= {T,...,} denote a tensor covariant in any number of indices. We
adopt the extended summation convention that if a pair of indices is repeated
on the bottom, we should sum over that index in an orthonormal basis with
respect to the metric g,;,. We let 87 = {3,7,...,} be the covariant derivative
with respect to the Levi-Civita connection I’/ associated to g;;, and we let
0T = 9,9,7;..., be the second (iterated) covariant derivative. We also let
dp = p(x)dx be the volume form associated to the metric. The tensor T = T,
has length | T| given by

| T|2 = I}...k];‘...ka

and | 9T | and | 37 | are defined analogously. We prove the following interpo-
lation inequality by integration by parts.

12.1 Theorem. Let X be a compact Riemannian manifold of dimension m and
let T = T, ., be any tensor on X. Suppose

l+-1-=-1— withr= 1.
p g r

Then
1/p 1/q

1/r |
[f[BTIZ’dy.} <(2r—2+m){f|32T|1’du} {flTl"du}
Proof. For simplicity we take T = {T;}, since the more general case in-

volves nothing extra but is more cumbersome to write. Integrating by parts

f‘ AT dp = faij} 9.7 (3T, ale)r—l dp
= [T, 83T |0T " dp

~2(r = 1) [{T33,T;, 9T, - 3, ) 8T " ~* dp.

Now
| T,- 09,7 |<m|T||0°T|,
<1}aiale= aiz} -9 T)<|T|| 82T| | aT‘Z’

and therefore

[18TPrdp< (2r — 2+ m) f| T||T||3T [~ dp.
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We can estimate the last integral using Holder’s inequality with
Lilyr=1loy,
p g r

and we get

[1oT P dp
1=1/r

<(@r-2+ m){f| 92T P dp.}l/p{fl qudp.}]/q{f’ 6T|2’dp} ,

and hence

1/r l/p /9
{f|6T|2’dp.} <(2r—2+m){f|62T|1’dp.] {flTde.J
12.2 Corollary. Ifp = 1 we have

{f]aT]zP dp,] P < p—-2+ m)mfxl T| - {flalepdp]W

Proof. Take ¢ = oo in the previous argument.
Next we need a result on convexity, which is geometrically obvious.
123 Lemma. Let f(k) be a real valued function of the integer k for

O<ksnlIf
f(k) <3[f(k—1) + f(k + 1)],
then

fk) < (1= %)f(0) + ££(n).

Proof. If we replace f(k) by
fl&) = f(k) ~ (1 = £)£(0) — ££(n),

the same hypothesis holds. Thus we may assume f(0) = 0 and f(n) = 0. Let
g(k) = f(k) — f(k — 1) for 1 < k < n. Then our hypothesis states that g(k) <
g(k + 1). Choose the integer m so that

g)<---<g(m)<o<g(m+1)<---g(n).

For any &
k n

flk)= 2 gli)=- 3 g(i).

i=1 i=k+1
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When k < m the first representation is negative, and when & = m the second
is. This proves f(k) <0 for 0 < k < n, which is the desired conclusion for
f(0) =0 and f(n) = 0.
12.4 Corollary. If f(k) satisfies
f)<i[fk-1) +fk+D]+C,
then

£(k) < (1= £)£(0) + £f(n) + Ck(n — k).

Proof. Apply the previous result to g(k) = f(k) + Ck>.
12.5 Corollary. If f(k) satisfies
(k) < ¢f(k = ) f(k + 1),
then
f(k) < CHBF(0) 7" f(n) ",

Proof. Apply the previous result to g(k) = log f(k).

Welet 9"T = {9, ---9; T....,} be the nth iterated covariant derivative of the
tensor T.

12.6 Corollary. If T is any tensor and if 1 <i<n — 1 then with a constant
C = C(n, m) depending only on n and m = dim X and independent of the metric
8;; or the connection 1',’; we have the estimate

[1oTp dp < Cmax | TP/ [137T P dp.

Proof. Applying the previous estimate to the temsor 9’ 'T when
2<i<n-—1lwith

_ 2n _ 2n _n
P=iy1 9571 T=77h
we get
. ) i/n
{fl azT|2n/z dﬂ}
(i+1)/2n ) (i—bH/2n
< C{fl ai+lT!2n/(i+])d#} {fl ai-—lTIZn/(z—])d#} i

where C = 2n/i — 2 + m depends only on m and n. Or when i = 1 we have

n

1/n 1/
2n < 2Tn .
{f1erpran} " <c{ froorr} " max
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with C =2n — 2 + m. Let

. i/2n
70 =max| 71, )= { frerp], i<isn
Then we have
fiy<cfii+ 1)1 - 1)?
from the previous estimates. Therefore
£(i) < CO) ™" 1 ()"

with a constant C depending only on m. This proves the theorem, since

i/2n

) ) i/2n .
{j| 6‘T|2"/’a’p} < Cmax|T|'~/" {j| T2 du}

12.7 Corollary. If T is any tensor then with a constant C = C(n, m) depend-
ing only on n and m = dim X and independent of the metric g;; and the
connection I‘I’J‘ we have the estimate for 0 < i<n

[1oTRdp< c{j|a"T|2 dp.}i/"{ﬂ lea’p.}

t—i/n

Proof. 1f we apply Theorem 12.1 to the tensor 0°~'T with p = ¢ = 2 and
r=1weget

/2

] 1/2 ) 1
[1oTPdp< c{f| yITITP dp.} {f| 6‘_‘T|2dp.} ,

and the result now follows from Corollary 12.5.

13. Higher derivatives of the curvature

If A and B are two tensors we write A * B for any linear combination of
tensors formed by contraction on 4,...;B,..., using the g'*. To avoid confusion
between the Riemannian, Ricci and scalar curvatures we let

Rm= {Rijk,} andRc = {RU’}'
As before 97T is the nth iterated covariant derivative of a tensor 7.

We want to derive the evolution equation for the nth covariant derivative
0”Rm of the Riemannian curvature. To that end the following lemma is useful.
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13.1 Lemma. If A and B are tensors satisfying the evolution eguation

iA =AA+ B,
ot
then the covariant derivative A satisfies an equation of the form

%8A=A8A+Rm*8A+A*8Rm+8B.

(In dimension 3 we may substitute Re.)

Proof. The covariant derivative 9 involves the Christoffel symbols IT'},, and
their time derivative is

I‘J'/i = %8“{ 8k + akgj"[ - a/gj"k}s
which may be expressed in terms of dRc since g;; = ~2R,;. Then

d _ 04
EBA—aat + ORm = A.

Now by interchanging derivatives
0AA = AdAd + 0Rm=* A + Rm = 04,
and this completes the proof.

13.2 Theorem. Tke nth covariant derivative 0"Rm of the Riemannian curva-
ture satisfies an evolution equation of the form
%B"Rm = Ad"Rm + Y, 9'Rm* 3'Rm.

i+j=n

Proof. If n=0 we know this is true by Theorem 7.1, which gives the
explicit form of the quadratic term. We proceed by induction on n, using the
previous lemma. This gives

0

Ea"“Rm = A3""'Rm + Rm « 3""'Rm + 9"Rm = 0'Rm

+3| Y Rm+ aij),
i+j=n
and the result follows by the distributive rule for 9.

13.3 Corollary. For any n we have an evolution equation

2 [aRm = A|9"Rm ~ 2] Rm P+ 3 3R+ 3R+ 3R

i+j=n
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Proof. This follows from the previous theorem. We have

T ot
where the extra terms come from the variation of the g/ defining the norm | °.
The usual computation gives
A|3"Rm > = 2(3"Rm, AO"Rm)+ 2| 3" 'Rm 2,
and the result follows.
13.4 Theorem. We have the estimate

%|8"Rm = 2<8"Rm i8"Rm> + Rm * 3"Rm * 3"Rm,

_i n 2 n+1 2 n 2
dtfx|a Rm | dp.+2fx|8 Rm | dp<Cm;1x|Rm|fX|8 Rm 2 dp.

with a constant C independent of the metric, depending only on the number n of
derivatives and the dimension m of X.

Proof. Since fAfdp = 0 for any function f, if we integrate the equation in
the previous corollary over X we only need to estimate the terms

f;a"Rm[|ame1|a"Rm| dp
X

) ) i/2n ] . J/2n
< f]B’Rm [>n/¢ dp f|ame 12"/ dp fla"Rm |2 dp
X b X

with i + j = n. By our interpolation result of Corollary 12.6 we have

. i/2n i/2n
{f]B’lez"/"dp.} <Cmalem|'_i/"{f]8”Rm]2dp} ,
X X X

and doing the same for j the theorem follows. Recall the constant in Corollary
12.6 depends only on » and m.

1/2

14. Long time existence

Let X be a compact manifold of any dimension and let us be given any
initial metric at ¢ = 0.
14.1 Theorem. The evolution equation

0

28~ -2R

iy
has a unique solution on a maximal time interval 0 <t < T < o0. If T < o0 then
max x| R l—> ccast > T.

Proof. Since we already know short time existence and uniqueness by the
Nash-Moser inverse function theorem, we can take the maximum time interval
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0=<7<T on which the solution exists. We will show that if 7< o0 and
| R;jx;|< C as ¢t —» T, then the metric g,; converges as ¢ — T to a limit metric
(which is strictly positive-definite), and all the derivatives converge also,
showing the limit metric is smooth. We could then use the short time existence
result to continue the solution past T, showing T is not maximal.

14.2 Lemma. Ler g;; be a time-dependent metric on X for 0 <t < T < c0.
Suppose

T
f max | g/;| dt < C < 0.
=0 X

Then the metrics g; (1) for all different times are equivalent, and they converge as
t = T uniformly to a positive-definite metric tensor g, (T) which is continuous
and also equivalent,
Proof. Notice the argument is slightly subtle, since we measure the size of
g/; with respect to g, ; which is changing;
| &1 = g%8”'8};81-
Fix a tangent vector v € TX at a point x € X and let

loff = gij(x, t)v'v’.

Then we take
d F RPN )
2o = gyot,
and it follows by Cauchy-Schwartz that
d r
Elog[v H<lgi]-

Then for 0 < 7 < § < T we have
()
ltog v f3/1v 2 |< [*1 g/, .

If the improper integral is finite, we see that all the metrics are equivalent.
Moreover | v,|* converges uniformly to a continuous function |v [} as t —» T
and | v | 7 0 if v ¥ 0. Since the parallelogram law
lo+wP+o—wP=2(of+|w])
continues to hold in the limit, the limiting norm comes from an inner product
8:,(T), using the rule
glo.w) =4(lo+wP—[o—w).

This completes the proof.
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143 Lemma. If|Rm|< Con0<1t<TandT< oo, then for any n we can
find a constant C, with

f1e"RmPan<c,.
X

Proof. This follows directly from Theorem 13.4 and the observation that if
df/dt < Cf on a finite time interval then we can bound f in terms of its initial
data. (Hint: let f = e~<'f.)

We wish next to derive supremum norm estimates on 0”Rm. Since they are
tensors, we use the following trick. First note that from the interpolation
inequality in Corollary 12.6 we immediately get estimates

f|8"Rm}Pdp.< .o

for all n and p < c0. Now let E, =|3"Rm|*. Then for all p < co we have
estimates

JUE P +13E,P)du <€

since E, and 9E, can be expressed in terms of Rm and its covariant derivatives.
But E,, is just a function, and by Sobolev’s inequality if p > n

max| P < G, (IfF +|97P) du.

Of course the constant C, depends on the metric g;(¢) and hence on time .
But it does not depend on the derivatives of the g;;, since it enters the
expression on the right only through |9/} = g%d,f9, );f and the measure
dp = p(x)dx with p(x) = detg; .. The derivative 9, f = af/ax is independent
of the connection I'%. Thus for functions the constant C, is uniformly bounded
as ¢t —» T, since the metrics are all equivalent by Lemma 14.2. Applying this
estimate to E, we get the following result.

144 Lemma. If|Rm|< Cyon0<:t<Tand T< oo then |3"Rm|< C, for
all n. The constant C, depends only on the initial value of the metric and the
constant C,.

Of course the estimates on Rm = {R,,} imply ones on Rc = {R;;}. Since
dg;;,/0t = —2R,;;, it is easy to see that the g, (2) have all their derivatives
bounded, and converge to the limit metric g; (7') in the C* topology as ¢ — T.
This completes the proof of Theorem 14.1.
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15. ControllingR .. /R ..

We return to the case where X is a compact three-manifold and the initial
metric has strictly positive Ricci curvature. The unnormalized evolution equa-
tion dg; /9t = ~2R;; will have a solution on a maximal time interval 0 < ¢ < T.
We know from Lemma 11.11 that T < oo, and then from Theorem 14.1 that
max |R;;|— co ast — T. Since | R;;|> = S <R?* wehave R ,,, » wast - T,
where R, is the maximum value of R and R_;, will be its minimum value.
We want to estimate R, /R ...

15.1 Theorem. Wehave R, /R, > last > T.

Proof. By Theorem 11.1 we know that for every 7 >0 we can find a
constant C(7) with

[8;R|<49*R*? + C(n)
on 0 <t¢<T.Since R, — oo as - T, we can find ¢ with C(n) < i9’R3/2
for§ <t < T.Then |9,R|< nR3 2 fort=6.

Fix a point x € X where R assumes its maximum. Then on any geodesic out
of x of length at most s = 1/9RY/% we have R = (1 — 9)R_,,,. We claim that
when 7 > 0 is small enough then this includes all of X. For R;; = eRg,; for
some ¢ > 0. It follows that every geodesic from x of length s has a conjugate
point when 7 is small by the following well-known theorem of Myers, which
the reader will find in Cheeger and Ebin [2, Theorem 1.26(1)].

15.2 Theorem (Myers). If R,;=(m — 1)Hg,; along a geodesic of length at
least mH™'/% on a manifold of dimension m then the geodesic has conjugate
points.

Thus we can reach every point of X by a geodesic of length at most s, and
hence R, = (1 — )R, It follows that R, /R . — last—>T.

15.3 Theorem. We have

fOTRmdz= %.

Proof. Choose a function f(t) equal to R, at t =0 and solving the
ordinary differential equation

4
dt

which is possible since R, is a continuous function of #. Since § < R?, we
have

=2R_ s

S(R=1)<AR=f)+2Rpu(R~ 1),
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and hence R < fon 0 < ¢ < T by the maximum principle. Since R, ~ oo as
t - T, we have f > o also. But

log f(1)/f(0) = 2 fo Renexl(8) 48,

and hence the integral diverges as ¢ — T.
15.4 Corollary. If r is the average scalar curvature, then

'/;Trdt=

Proof. WehaveR_;, <r<R, andR_, /R ;. —lasz—>T.
15.5 Theorem. S/R*— 1 >0ast— T.
Proof. By Theorem 10.1 we have

S/R?— 1 < CR™,
and R_;, - oo (since R, — o0 and R_,. /R .. = ).

16. Estimating the normalized equation
Next we consider how to convert our estimates for the unnormalized
equation

0
(*) 328 = 2Ry

into estimates on the normalized equation

0 -
(**) ath = % 2R,-J-.

Let (*) have a solution on a maximal interval 0 < ¢ < T and let (++) have a
corresponding solution on 0 < ¢ < T related by the transformation equations
given in §3.

161 Lemma. R_, /R ~last— T.

Proof. Since we are dilating by a constant, the ratio is unchanged.

16.2 Lemma. R,; > &R, for some & > 0.

Proof. Again both sides stretch equally under dilations.

163Lemma. R, <C<owon0<i<T

Proof. Let the metnc §;; have volume V and diameter d. Then V < Cd>,
and since R,; = eRg,; we have d < CR,/* by Myer’s Theorem 15.2. Thus
VR¥2<C. But for the normalized equation the volume ¥ = 1. Thus R, < C.
Then R, < C also from Lemma 16.1.
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164 Lemma. 7T = oo.
Proof. Since di/dt = § and Y7 = r we have

by Corollary 15.4. But 7 < R, < C, so we must have T = oo.

16.5Lemma. S/R*— 1 >0ast— co.

Proof. Again this follows from Theorem 15.5 since the expression is
invariant under dilation.

Since we have the relation

§—3R = 4[(R—p)+ R=9)+ (a~5)],
it follows that the ratio A /ji of any two eigenvalues of R, ; converges to 1 as
t - co. Since R, /R - 1 as ¢ - oo also, it must eventually happen that the
sectional curvature is pmched, or indeed as pinched as we like. At this point
it follows from the Sphere Theorem (see Cheeger and Ebin [2, Theorem 6.1])
that the universal cover of X is a sphere. However, we shall only borrow a
lemma.

16.6 Lemma. (Klingenberg). Let X be a simply connected manifold of
dimension 3 or more whose sectional curvature is pinched between K and ;K.
Then the injectivity radius of X is at least w / VK .

Proof. See Cheeger and Ebin [2, Theorem 5.10].

We apply this result to the universal cover Y of X. The constant X will be
proportional to R_;,. The volume is at least t some multiple of the injectivity
radius. Thus we get an estimate R‘3/ ’<C- Vol(Y) But X has volume one for
the normalized equation, and then the volume of its universal cover Y is just
the number of elements in the fundamental group of X (which is finite by
Myer’s theorem). This gives a proof of the following.

16.7 Lemma. We can find ¢ > 0 such that R ,;; = e on 0 < < 0.

17. Exponential convergence

We start with a principle for converting from the unpormalized to the
normalized evolution equation. Let P and Q be two expressions formed from
the metric and curvature tensors, and let P and Q0 be the corresponding
expressions for the normalized equation. Since they differ by dilations, they
differ by a power of . We say P has degree » if P = 4"P. Thus g; ; has degree

R;; has degree 0, R has degree -1, and S has degree -2.
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17.1 Lemma. Suppose P satisfies
apP
k3

for the unnormalized equation, and P has degree n. Then Q has degree n — 1,
and for the normalized equation
b
or

=AP+Q

=AP+ 0+

wll\)

Proof. We see Q has degree n — 1 since 37/9¢ = ¢ and A = YA. Then
d 5 S -nf LA
tkgt:(tk‘”P) = yA(y™"P) +¢7"Q,
% 5 —P.
ar
But from §3 we know dlogy/dt = }r, so dlogy/dt = 37. This prove the
lemma.

Now from §16 we know that the normalized equation (**) has a solution on
0 <1< o0 with

d n
2p=AP+0+ 2
¥ 0+3

w.
A

0<e<R_, <R, <C,
¢Rg,; <R, <Rg,,
R ./Ryn—1 and S~/R2—%—>0 ast — oo.
We want to show the convergence is exponential.
17.2 Lemma. We can find constants C < o0 and 8 > 0 such that

Proof. We let f=S/R*— 1. Note f has degree 0. Then by Lemma. 10.5
with v = 2 we have

2’: Af+ EgMa Ry, f—4P/R,

and by Lemma 10.7 we have

This makes
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with 79 = 28793, R /R and § = 4¢? /3C since

4P /R® = 46°Sf/R® = 4&*f/3R = 8f
with § = 1R? and R < C. But then

2 (e47) = 8(e27) + 250, e57),

and by the maximum principle e%’f < C. Thus f < Ce~%. Since R is bounded
above and below, this is equivalent to the theorem.
17.3 Corollary. |R,; — 1Rg,;|< Ce™®.
Proof. The eigenvalues of the matrix are of the form
A=A+ p+r)=3HQA-p) + (A =-»)],
while

S— 1R =4[(A~p) + (A= ») +(n—»)].
The estimate follows.
174 Lemma. We can find constants C < o0 and 8 > 0 such that

Proof. This time we let
F=|8,RI*/R + 168(S — 1R?).
Then F has degree -2, and from Lemmas 11.7 and 11.9 (with 7 = 0) we get

R2) - 377,

Wl

aijs AF + 672R(S -
t

since Lemma 17.1 also works for inequalities. Using our estimate from Lemma
17.2
3 F<AF+ Ced - oF
ot .
for some C < o0, 8 >0 and ¢ > 0, since R < Cand 7> R_,_ = ¢ > 0. But this
makes

ait_(esff — ¢i) < A(eF - Ci),

and by the maximum principle we have e*F — Ci < C. Then £ < C(1 + f)e~%,
and since 8 > 0 is arbitrary this proves the theorem (by taking a slightly
smaller 8).
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17.5 Corollary. | R,; — 17g,;|< Ce™®.
Proof. This follows from the last two lemmas since
[Rij - %;gijlslﬁij - %Rgijl 'HR - F|/\/§

Using Lemma 14.2, we get the following result.

17.6 Theorem. The metrics g, j(f) are all equivalent, and converge as t - o
uniformly to a continuous positive-definite metric g; (co).

To estimate higher derivatives we return to Theorem 13.4. Notice that all
three terms have the same degree of homogeneity, and hence the same result
holds for the normalized evolution equation. Since in three dimensions the
Riemannian curvature Rm is entirely determined by the Ricci curvature Re, we
have the estimate

d - ~ ~ N
— [ |8"Rc|?dji+ 2| |3"*'Re|* dji < Cmax | Rc 9"Rc |* dji
—f |8"RefPdp+2f |87 'Rel? di < Cmax | Re| [ |3"Re d
and max , | Rc|< C. We introduce the temorE={Eij} defined by
Eij = Rij - %;gij’

and observe that 8"Rc = 8"E for n > 0, since 7 is constant. Then interpolating
by Corollary 12.7

- 5 n/(n+1)
n 1 n ~ 12 g0
fx|a Re| dysC{fxw Re| d[.l.} {fxlEl d,;}

Now for any ¢ > 0 and all x, y > 0 we have
xny < CEX"+1 + CS—"y"+l,
and applying this above gives

1/(n+1)

npa2 i< n+1p .12 g -n =12 35
fx|a Re| dy<Cst]8 Re? dii + Ce fX|E| dj.

Then we get the following result.
17.7 Lemma. For every n we have

[loRePdi<c
X
with a constant depending on n.

Proof. 1f we choose &€ > 0 so small that Ce < 2 we can substitute this in the
previous equation and get

d . .
— [ |3"RePdp<C[ |EPdp.
d,fxl " diz fxl " dis
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But we know | E |< Ce~% for some 8 > 0 by Corollary 17.5, and the lemma
follows.

Next we use the interpolation estimate of Corollary 12.6, which immediately
gives the following result.

17.8 Lemma. For every n > 0 and every p < oo we have

[ 19Rep dji < ce®
X

for some constants C < o0 and 8 > 0 depending on n and p.
Proof. This follows immediately from Corollary 12.6 since for 1 <i<
n—1

[ |9Re P/ dip< Cmax | EX/0 [ |3"Re 2 dfi,
X X X

and the maximum norm of E decreases exponentially while the L, norm of
8" Rc is bounded.
17.9 Theorem. For every n > 0 we have

max |9"Re |< Ce™®

for some constants C < oo and 8 > 0 depending on n.

Proof. We repeat the argument of Lemma 14.4. The function £, =|3"Rc |
is exponentially decreasing in L, norm for all p<oasare its first denvatlves
Since the metrics g, j(t) are all eqmvalent as f — oo, we can apply the Sobolev
estimate with a uniform constant to show the supremum norm of E, is also
exponentially decreasing

17.10 Corollary. As t — « the metrics g, j(t) converge to the limit metric
g;;(0) in the C* topology Hence g, (o) is smooth, and the curvatures R, j(t)
converge to the curvature R, ;{00

Proof. This follows directly from the previous result since

0 . 2 _. 5
Btg'j = 378~ 2R;;.

17.11 Corollary.  The limit metric g, j(oo) has constant positive curvature.
Proof. By Corollary 17.5 the tensor R — 37§;; converges uniformly to
zero. This proves Main Theorem 1.1.
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